3.6.22 \(\int \frac {x^7}{(a+b x^4) \sqrt {c+d x^4}} \, dx\)

Optimal. Leaf size=74 \[ \frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 b^{3/2} \sqrt {b c-a d}}+\frac {\sqrt {c+d x^4}}{2 b d} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {446, 80, 63, 208} \begin {gather*} \frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 b^{3/2} \sqrt {b c-a d}}+\frac {\sqrt {c+d x^4}}{2 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^7/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

Sqrt[c + d*x^4]/(2*b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(2*b^(3/2)*Sqrt[b*c - a*d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^7}{\left (a+b x^4\right ) \sqrt {c+d x^4}} \, dx &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {x}{(a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )\\ &=\frac {\sqrt {c+d x^4}}{2 b d}-\frac {a \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^4\right )}{4 b}\\ &=\frac {\sqrt {c+d x^4}}{2 b d}-\frac {a \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^4}\right )}{2 b d}\\ &=\frac {\sqrt {c+d x^4}}{2 b d}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{2 b^{3/2} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 72, normalized size = 0.97 \begin {gather*} \frac {1}{2} \left (\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4}}{\sqrt {b c-a d}}\right )}{b^{3/2} \sqrt {b c-a d}}+\frac {\sqrt {c+d x^4}}{b d}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^7/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

(Sqrt[c + d*x^4]/(b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(b^(3/2)*Sqrt[b*c - a*d]))/2

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.10, size = 84, normalized size = 1.14 \begin {gather*} \frac {a \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^4} \sqrt {a d-b c}}{b c-a d}\right )}{2 b^{3/2} \sqrt {a d-b c}}+\frac {\sqrt {c+d x^4}}{2 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^7/((a + b*x^4)*Sqrt[c + d*x^4]),x]

[Out]

Sqrt[c + d*x^4]/(2*b*d) + (a*ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x^4])/(b*c - a*d)])/(2*b^(3/2)*Sqrt
[-(b*c) + a*d])

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 205, normalized size = 2.77 \begin {gather*} \left [\frac {\sqrt {b^{2} c - a b d} a d \log \left (\frac {b d x^{4} + 2 \, b c - a d + 2 \, \sqrt {d x^{4} + c} \sqrt {b^{2} c - a b d}}{b x^{4} + a}\right ) + 2 \, \sqrt {d x^{4} + c} {\left (b^{2} c - a b d\right )}}{4 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}, -\frac {\sqrt {-b^{2} c + a b d} a d \arctan \left (\frac {\sqrt {d x^{4} + c} \sqrt {-b^{2} c + a b d}}{b d x^{4} + b c}\right ) - \sqrt {d x^{4} + c} {\left (b^{2} c - a b d\right )}}{2 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b^2*c - a*b*d)*a*d*log((b*d*x^4 + 2*b*c - a*d + 2*sqrt(d*x^4 + c)*sqrt(b^2*c - a*b*d))/(b*x^4 + a))
 + 2*sqrt(d*x^4 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2), -1/2*(sqrt(-b^2*c + a*b*d)*a*d*arctan(sqrt(d*x^4
+ c)*sqrt(-b^2*c + a*b*d)/(b*d*x^4 + b*c)) - sqrt(d*x^4 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 64, normalized size = 0.86 \begin {gather*} -\frac {\frac {a d \arctan \left (\frac {\sqrt {d x^{4} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} b} - \frac {\sqrt {d x^{4} + c}}{b}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*(a*d*arctan(sqrt(d*x^4 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^4 + c)/b)/d

________________________________________________________________________________________

maple [B]  time = 0.21, size = 335, normalized size = 4.53 \begin {gather*} \frac {a \ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, b^{2}}+\frac {a \ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{4 \sqrt {-\frac {a d -b c}{b}}\, b^{2}}+\frac {\sqrt {d \,x^{4}+c}}{2 b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/(b*x^4+a)/(d*x^4+c)^(1/2),x)

[Out]

1/2*(d*x^4+c)^(1/2)/b/d+1/4*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c
)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x^2+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2
))/(x^2+(-a*b)^(1/2)/b))+1/4*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c
)/b+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x^2-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2
))/(x^2-(-a*b)^(1/2)/b))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^7/(b*x^4+a)/(d*x^4+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 4.73, size = 58, normalized size = 0.78 \begin {gather*} \frac {\sqrt {d\,x^4+c}}{2\,b\,d}-\frac {a\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d\,x^4+c}}{\sqrt {a\,d-b\,c}}\right )}{2\,b^{3/2}\,\sqrt {a\,d-b\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^7/((a + b*x^4)*(c + d*x^4)^(1/2)),x)

[Out]

(c + d*x^4)^(1/2)/(2*b*d) - (a*atan((b^(1/2)*(c + d*x^4)^(1/2))/(a*d - b*c)^(1/2)))/(2*b^(3/2)*(a*d - b*c)^(1/
2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{7}}{\left (a + b x^{4}\right ) \sqrt {c + d x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**7/(b*x**4+a)/(d*x**4+c)**(1/2),x)

[Out]

Integral(x**7/((a + b*x**4)*sqrt(c + d*x**4)), x)

________________________________________________________________________________________